Exam Symmetry in Physics

Date April 7, 2022
Time 8:30-10:30
Lecturer D. Boer

- Write your name and student number on every separate sheet of paper
- The weights of the subquestions (a, b, c) of the three exercises are given below
- Illegible answers will not be graded
- Good luck!

Weighting

1 a$)$	12	$2 \mathrm{a})$	10	$3 \mathrm{a})$	8
$1 \mathrm{~b})$	12	$2 \mathrm{~b})$	12	$3 \mathrm{~b})$	10
$1 \mathrm{c})$	10	$2 \mathrm{c})$	8	$3 \mathrm{c})$	8

$$
\text { Result }=\frac{\sum \text { points }}{10}+1
$$

Exercise 1

Consider the cube:

(a) Identify all rotations that leave the cube invariant and show that together they form the group S_{4} by looking at the action on the 4 diagonals.
(b) Divide the elements of S_{4} into conjugacy classes (using either geometric arguments or the disjoint cycle structure) and determine the dimensions of all the irreps of S_{4}. The character table does not need to be constructed.
(c) Construct the characters of D^{V} for the rotational symmetry of the cube and show by explicit calculation that 1) D^{V} is an irrep of S_{4} and that 2) a molecule with the rotational symmetries of the cube cannot have a permanent electric dipole moment.

Exercise 2

Consider the symmetric group S_{3} consisting of the permutations of three objects and view the three basis vectors of R^{3} as the three objects that are permuted. This leads to the following three-dimensional $(d=3)$ rep D^{L} of S_{3} :

$$
D^{L}(c)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad D^{L}(b)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Here the rep is only specified for the two generators c and b of S_{3} which in cycle notation are given by $c=(123)$ and $b=(12)$.
(a) Show that D^{L} indeed forms a representation of S_{3} (for example by using the presentation of the group).
(b) Show that $d^{2}>[g]$ implies that D^{L} is not an irrep of S_{3} and decompose D^{L} into irreps of S_{3} using the character table of S_{3}.
(c) Show that $D^{L}(g) \in O(3)$ and that D^{L} is equivalent to the vector rep D^{V} of the subgroup $C_{3 v} \cong S_{3}$ of $O(3)$, rather than of the subgroup $D_{3} \cong S_{3}$ of $S O(3)$.

Exercise 3

Consider the group $O(2)$ of real orthogonal 2×2 matrices.
(a) Write down explicitly all elements of $O(2)$ in its defining representation.
(b) Consider two vectors in $\mathrm{R}^{2}: \vec{v}=\left(v_{x}, v_{y}\right)$ and $\vec{w}=\left(w_{x}, w_{y}\right)$. Demonstrate that the quantity $v_{x} w_{y}-v_{y} w_{x}$ behaves like a pseudoscalar in R^{2}.
(c) Derive or deduce the form of the invariant rank-2 tensors $T_{2 \jmath}$ that are allowed for an $O(2)$ invariant system (you may use Schur's lemma and assume that the defining representation is an irrep).

